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Abstract
Exact analytical solutions for the bound states of a graphene Dirac electron in various magnetic
fields with translational symmetry are obtained. In order to solve the time-independent
Dirac–Weyl equation the factorization method used in supersymmetric quantum mechanics is
adapted to this problem. The behavior of the discrete spectrum, probability and current
densities are discussed.

1. Introduction

The discovery of graphene [1, 2], a two-dimensional layer
of graphite, and the massless Dirac character of the low
energy electrons moving has attracted much interest in physics
due to its important electronic properties. In particular, it
is a scenario where some fundamental aspects of relativistic
quantum mechanics can be addressed, such as the Klein–
Gordon paradox or the anomalous Landau–Hall effect [2, 3].
Also, graphene is an appropriate material to develop electronic
devices. Recently a series of studies concerning the
interaction of graphene electrons in perpendicular magnetic
fields (sometimes including electrostatic fields parallel to the
layer surface) have been carried out in order to find a way for
confining the charges [4–12]. In these works the Dirac–Weyl
equation for massless electrons with a Fermi velocity vF is
considered, where a minimal coupling with the vector potential
describes the interaction with the external field. In general,
some kinds of numerical computation were needed to find the
energy levels of confined states or transmission coefficients for
scattering states.

In this paper our interest is to consider interactions under
perpendicular magnetic fields invariant under translations in
one direction, and at the same time allowing for exact
analytical solutions of the Dirac–Weyl equation. In order to
achieve this goal we will adapt the factorization method and
the techniques of supersymmetric quantum mechanics (SUSY-

QM) to this situation [13–18]. This will allow us to gather
here a number of problems where the results can be easily
discussed, and at the same time we can interpret them in light
of other situations previously considered in the literature. Let
us mention that some SUSY-QM methods have been applied
to graphene to obtain the exact and numerical solutions of
Dirac electron Hamiltonians [19, 20] and also to describe the
quantum Hall effect [21–23].

The organization of this paper is as follows. In section 2
we introduce the factorization method in the framework of the
Dirac–Weyl equation for a massless electron in a magnetic
field. Section 3 supplies a list of cases that can be solved
using this method and with some figures describing basic
properties. We end with some comments on the obtained
results in section 4.

2. The Dirac–Weyl equation and SUSY partner
Hamiltonians

In graphene a Dirac electron moves with an effective Fermi
velocity vF = c/300, where c is the velocity of light,
and behaves as a massless quasi-particle. The effective
Hamiltonian around a Dirac point for a Dirac electron has the
form [2]

H = vF(σ · p), (2.1)

where σ = (σx , σy) are the Pauli matrices and p =
−ih̄(∂x , ∂y) is the two-dimensional momentum operator. The
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massless Dirac–Weyl equation in (2 + 1) dimensions takes the
form

vF(σ · p)�(x, y, t) = ih̄
∂�(x, y, t)

∂ t
. (2.2)

Here, we are interested in stationary states, thus substituting
�(x, y, t) = �(x, y)e−iEt/h̄ into (2.2), we get the time-
independent Dirac–Weyl equation

vF(σ · p)�(x, y) = E�(x, y). (2.3)

The interaction of a Dirac electron with a magnetic field
perpendicular to the graphene surface is described by (2.3),
replacing the momentum operator p by p+ eA/c, according to
the minimal coupling rule, with (−e) the charge of the electron,
with the vector potential and the magnetic field given by

A = (Ax, Ay, 0), B = ∇ × A. (2.4)

Then, equation (2.3) becomes

vF

[
σ ·

(
p + e

c
A

)]
�(x, y) = E�(x, y). (2.5)

The two-component wavefunction is the column matrix
�(x, y) = (φ1(x, y), φ2(x, y))T, with the super-index T
denoting matrix transposition. From equation (2.5) we can
write the two coupled equations for the components φ1(x, y)
and φ2(x, y) as

− i

(
∂

∂x
+ i

eAx

ch̄
− i

∂

∂y
+ eAy

ch̄

)
φ2(x, y) = Eφ1(x, y) (2.6)

− i

(
∂

∂x
+ i

eAx

ch̄
+ i

∂

∂y
− eAy

ch̄

)
φ1(x, y) = Eφ2(x, y), (2.7)

where E = E/(h̄vF). In this paper we will focus on
interactions with external magnetic fields having a translational
symmetry along a direction in such a way that the problem can
be solved analytically. We fix the symmetry direction as the y
axis and choose the Landau gauge for the vector potential so
that

A(x) = (0, Ay(x), 0), B = (0, 0, B(x)),

B(x) = dAy (x)

dx
.

(2.8)

By means of this gauge, equations (2.6) and (2.7) are
independent of y, and therefore we can separate the
wavefunction in the form �(x, y) = eiky(ψ1(x), iψ2(x))T,
where k is the wavenumber in the y direction. Then,
equations (2.6) and (2.7) become

(
d

dx
+ k + e

ch̄
Ay

)
ψ2(x) = Eψ1(x), (2.9)

(
− d

dx
+ k + e

ch̄
Ay

)
ψ1(x) = Eψ2(x). (2.10)

The decoupled second-order differential equation satisfied by
each component is

H1ψ1(x) :=
[
− d2

dx2
+

(
k + eAy

ch̄

)2

+ e

ch̄

(
dAy

dx

)]
ψ1(x) = εψ1(x), (2.11)

H2ψ2(x) :=
[
− d2

dx2
+

(
k + eAy

ch̄

)2

− e

ch̄

(
dAy

dx

)]
ψ2(x) = εψ2(x), (2.12)

where

ε = E2 = E2

h̄2v2
F

. (2.13)

Therefore, we have arrived at two effective Hamiltonians
in (2.11) and (2.12) for each component:

H1 = − d2

dx2
+ V1(x), H2 = − d2

dx2
+ V2(x), (2.14)

which are interrelated by the Dirac–Weyl equation. Now,
observe that if we define the first-order differential operators
(adjoint of each other)

L± = ∓ d

dx
+ W (x), (2.15)

where the superpotential function W (x) is

W (x) = k + eAy

ch̄
, (2.16)

relations (2.9) and (2.10) can be rewritten in the form

L−ψ2(x) = Eψ1(x), L+ψ1(x) = Eψ2(x). (2.17)

The Hamiltonians H1 and H2 are factorized as

H1 = L−L+, H2 = L+L− (2.18)

and the effective potentials are expressed in the following way:

V1 = W 2 + W ′, V2 = W 2 − W ′, (2.19)

where the prime denotes here differentiation with respect
to x . From relations (2.17)–(2.19) we can state that the
Hamiltonians H1 and H2 are one-dimensional supersymmetric
partner Hamiltonians, linked by the intertwining (or SUSY)
transformations L± [14]:

H1L− = L− H2, H2L+ = L+ H1. (2.20)

There are many properties that can be inferred from this
relation. In particular, if we assume that the spectrum of
H1 (H2) is known, then its partner H2 (H1) will have the
same spectrum except possibly the ground state (as is required
from (2.11) and (2.12)). In order to fix some details, we
will consider separately three characteristic cases of special
physical interest.
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(i) Let {ε2,n}, n = 0, 1, . . ., be the discrete spectrum of
H2 with corresponding real eigenfunctions {ψ2,n}. If the
ground state of H2 is annihilated by L−:

L−ψ2,0 = 0, (2.21)

then, from (2.18) the ground state eigenvalue of H2 is
ε2,0 = 0 and the discrete spectrum of H1 will consist of the
eigenvalues {ε1,n} and normalized eigenfunctions {ψ1,n}
given by

ε1,n−1 = ε2,n,

ψ1,n−1(x) := 1√
ε2,n

L−ψ2,n(x), n = 1, 2, . . . .

(2.22)
Using our gauge, and taking into account the above
results, we have that the eigenfunctions of the Dirac–Weyl
equation (2.5), with the notation (2.13) for the energies,
are

E0 := ε2,0 = 0,

�0(x, y) = eiky

(
0

iψ2,0(x)

)
,

(2.23)

E±,n := ±√
ε2,n = ±√

ε1,n−1,

�n(x, y) = eiky

(
ψ1,n−1(x)
iψ2,n(x)

)
, n = 1, 2 . . . .

(2.24)
In the following section we will take this as the standard
case. Thus, we will give here two functions that are
useful in studying the properties related to the states in
the discrete spectrum (2.24): the probability density for an
eigenfunction

ρn(x) = (�n)
†�n = (ψ1,n−1(x))

2 + (ψ2,n(x))
2, (2.25)

and the current density in the y direction for this
eigenfunction

jn(x) = evF(�n)
†σy�n = 2evFψ1,n−1(x)ψ2,n(x).

(2.26)
In both cases the functions are constant in time, which
corresponds to stationary states, and are independent of
y, due to the translational symmetry.
Note that the discrete spectrum given by equations (2.23)
and (2.24) has positive and negative eigenvalues disposed
in a symmetric way. They correspond to electrons and
holes, respectively.

(ii) A similar situation appears if we start with a known
spectrum {ε1,n}, n = 0, 1, . . . of H1 with eigenfunctions
{ψ1,n} and we suppose that

L+ψ1,0 = 0. (2.27)

Then, we would have ε1,0 = 0 and

ε2,n−1 = ε1,n,

ψ2,n−1(x) := 1√
ε1,n

L+ψ1,n(x), n = 1, 2 . . .

(2.28)

with stationary solutions

E0 := ε1,0 = 0,

�0(x, y) = eiky

(
ψ1,0(x)

0

)
,

(2.29)

E±,n := ±√
ε1,n = ±√

ε2,n−1,

�n(x, y) = eiky

(
ψ1,n(x)

iψ2,n−1(x)

)
, n = 1, 2, . . . .

(2.30)
(iii) Still, there is a third situation that appears when the ground

states of both partner Hamiltonians H1 and H2 have the
same ground state eigenvalue (which must be different
from zero). Then

L+ψ1,0 ∝ ψ2,0 �= 0, L−ψ2,0 ∝ ψ1,0 �= 0. (2.31)

The eigenvalues of H1 and H2 are ε1,n = ε2,n = εn and
the component eigenfunctions

ψ1,n(x) := 1√
εn

L−ψ2,n(x),

ψ2,n(x) = 1√
εn

L+ψ1,n(x).

(2.32)

The spectrum of the Dirac–Weyl equation is

E±,0 := ±√
ε0 �= 0,

E±,n := ±√
εn, n = 1, 2, . . . ,

(2.33)

and the corresponding two-component stationary eigen-
functions are

�n(x, y) = eiky

(
ψ1,n(x)
iψ2,n(x)

)
, n = 0, 1, 2, . . . .

(2.34)

3. Solvable cases

Now, we will analyze in detail some special cases of vector
potentials that give rise to effective potentials whose exact
analytic solutions can be found [13, 14]. We will pay special
attention to the general common properties as well as to the
main differences between these cases. Hereafter, we will
assume (unless explicitly stated otherwise) that the involved
parameters ω, α and D in the examples below are positive.

3.1. Case I: constant magnetic field

From (2.8), in order to have a constant magnetic field
perpendicular to the graphene plane in the positive direction
of the z axis, B = (0, 0, B0), we can choose Ay = B0x .
This is the very well-known case of Landau levels that has
been considered in many references [2, 3]. In this case, the
superpotential (2.16) is

W = k + eB0

ch̄
x := k + 1

2
ωx, B0 = ch̄

2e
ω, (3.1)

3
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Figure 1. Constant field. On the left, plot of the effective potentials V1(x) (dashed line), V2(x) (dotted line) and the magnetic field
B(x) = 1/2 (solid line) given in equations (3.1) and (3.2). The parameters are taken ω = k = 1. Note that V1(x) and B(x) touch at just one
point: x0 = −2, which coincides with the oscillator displacement. On the right, the first positive levels from equation (3.5),
E+,0(k), . . . , E+,5(k) which, in the present case, are all constant.

Figure 2. For a constant magnetic field B(x) = 1/2 and ω = k = 1, on the left, plot of the density ρn(x), for n = 0, 1, 2, 3 (the higher and
more concentrated curve corresponds to n = 0, the lowest and more spread one corresponds to n = 3); on the right, plot of the current
jn(x)/(evF), for n = 1, 2 and 3 (the styles are the same as the corresponding densities).

where we have introduced a constant ω, whose dimensions are
(length)−2. From (2.19), the super-partner potentials are the
shifted oscillators:

V1 = ω2

4

(
x + 2k

ω

)2

+ 1

2
ω,

V2 = ω2

4

(
x + 2k

ω

)2

− 1

2
ω.

(3.2)

From here, obviously the eigenvalues for the corresponding
partner Hamiltonians H1 and H2 are basically the same, but
shifted one unit in ω:

ε2,0 = 0, ε2,n = ε1,n−1 = nω, n = 1, 2 . . . .
(3.3)

The eigenfunctions are given in terms of Hermite polynomials,
which corresponds to harmonic oscillator potentials:

ψ2,n(z(x)) = ψ1,n(z(x)) = Cne− 1
2 z2

Hn(z) := ϕn(x),

z =
√
ω

2

(
x + 2k

ω

)
,

(3.4)

where Cn is a normalization constant. Then, taking
into account (2.13), the eigenvalues of the Dirac–Weyl
equation (2.5) are

E±,n = ±√
ωn, n = 0, 1, . . . . (3.5)

The wavefunctions can be read from (2.24) as

�0(x, y) = eiky

(
0

iϕ0(x)

)
,

�n(x, y) = eiky

(
ϕn−1(x)
iϕn(x)

)
, n = 1, 2, . . . .

(3.6)

Remark that the discrete spectrum (3.3) does not depend on the
wavenumber k, which only affects the effective potentials (3.2)
in a translation and the wavefunctions (3.6) in a global phase
and in a displacement.

In figure 1 we show a plot of the effective potentials
together with the magnetic field (left) and some of the first
positive eigenvalues as functions of k (right). We omit
here, and in the next figures, the negative eigenvalues, which

4



J. Phys.: Condens. Matter 21 (2009) 455305 Ş Kuru et al

Figure 3. Hyperbolic well. Plot of the effective potentials V1, V2 and magnetic field B given by (3.9) and (3.7), respectively (left) and the
behavior of discrete energy levels E+,n(k) depending on k (right). We have chosen the first positive energy levels E+,0(k), . . . , E+,n(5). The
parameters α = 1, D = 6, k = 1 were taken for the left figure. As explained in the conclusions, V2 and eB/ch̄ touch at just one point and the
energy levels have enveloping lines with slope ±vF.

Figure 4. Plot of the density ρn(x) for n = 0, 1, 2, 3 (left) and current jn(x) for n = 1, 2, 3 (right) in the case of an hyperbolic well. We have
taken α = 1, D = 6, k = 1. The style of corresponding probability and current densities are the same.

correspond to holes, and are completely symmetric to the
positive ones, corresponding to electrons.

In figure 2 the density ρ given by equation (2.25) and the
current j given by equation (2.26) are shown for some of the
first eigenfunctions in (3.6).

With the above choice of parameters we were in the frame
of case (i) of section 2. Had we taken the magnetic field in
the direction of the negative z axis, we would have obtained
analogous solutions in the form of case (ii).

3.2. Case II: hyperbolic well or barrier

Another interesting solvable case appears if we have a
magnetic field with the following hyperbolic form:

B(x) =
(

0, 0,
B0

cosh2 αx

)
. (3.7)

From equation (2.8), the vector potential can be chosen to be
Ay = B0

α
tanhαx . Then, the superpotential is

W (x) = k + D tanhαx, D = eB0

h̄cα
, (3.8)

and from (2.19) the super-partner potentials (sometimes called
Rosen–Morse II potentials [13, 14]) are

V1(x) = D2 + k2 − D(D − α)sech2αx + 2k D tanhαx,

V2(x) = D2 + k2 − D(D + α)sech2αx + 2k D tanhαx .
(3.9)

Only if k < D will the Hamiltonians H1 and H2 have a finite
discrete spectrum whose eigenvalues are given by

ε2,n = ε1,n−1 = D2 + k2 − (D − nα)2 − k2 D2

(D − nα)2
> 0,

(3.10)
where n = 0, 1, . . . , N , is such that Nα < D < (N + 1)α.
Taking z = tanhαx , s1 = D

α
− 1, s2 = s1 + 1, a1 = kD

α(D−nα+α)
and a2 = kD

α(D−nα) , the corresponding eigenfunctions are

ψ j,n(z(x)) = (1 − z)(s j −n+a j )/2(1 + z)(s j−n−a j )/2

× P
(s j −n+a j ,s j −n−a j )
n (z), j = 1, 2 (3.11)

and P(a,b)
n (z) are Jacobi polynomials being a, b > −1.

Remark that the exponents of the factors in (3.11) are greater
than zero in order to satisfy the square-integrability condition.

5
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Figure 5. Trigonometric well. Plot of the effective potentials V1, V2 and magnetic field B given by (3.15) and (3.13), respectively (left), and
the first discrete energy levels E+,n depending on k given by (3.18) (right). The parameters α = 1, D = 4, k = −2 were taken for the left
figure.

Figure 6. Plot of the density ρn(x) for n = 0, 1, 2, 3 and current jn(x) for n = 1, 2, 3 in the case of a trigonometric well. We have taken
α = 1, D = 4, k = −2.

Then, the eigenfunctions of the Dirac–Weyl equation (2.5) can
be read from equation (2.24) while the discrete eigenvalues are

E±,n = ±h̄vF

√
D2 + k2 − (D − nα)2 − k2 D2

(D − nα)2
. (3.12)

As can be seen from the above formulae, the maximum number
of discrete levels is determined exclusively by the quotient
of the field parameters D and α. However, once α and D
fixed, as we increase k (see figure 3, right) this number of
levels decreases and at the same time the remaining levels have
lower energies. In figure 3 we can see the plot of the effective
potentials and magnetic field and the behavior of the spectrum
as a function of the wavenumber k. Figure 4 displays the shape
of the density ρn and current jn for some bound states.

3.3. Case III: trigonometric singular well

Let us consider now a magnetic field of trigonometric form,
given by

B =
(

0, 0,
B0

sin2 αx

)
, 0 � αx � π. (3.13)

In this case we are restricted to a strip 0 < x < π/α, such
that in the borders the magnetic field diverges. This case
represents a situation opposite to that of case II where the
magnetic field was bigger at the center of the strip but vanished
as |x | → ∞. The vector potential is Ay = − B0

α
cot αx , and

the superpotential will be

W = k − D cot αx, D = eB0

h̄cα
. (3.14)

The super-partner effective potentials (also called Rosen–
Morse I potentials) from (2.19) have the form

V1 = k2 − D2 + D(D + α)cosec2αx − 2k D cot αx,

V2 = k2 − D2 + D(D − α)cosec2αx − 2k D cot αx .
(3.15)

The corresponding eigenvalues, together with ε2,0 = 0, are

ε2,n = ε2,n−1 = −D2 +k2+(D+nα)2− k2 D2

(D + nα)2
, (3.16)

and their eigenfunctions

ψ j,n(z(x)) = (z2 − 1)−(s j +n)/2ea jαx

× P
(−s j −n+ia j ,−s j −n−ia j )
n (z), j = 1, 2 (3.17)

6
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Figure 7. Exponential decaying field. Plot of the effective potentials V1, V2 and magnetic field B given by (3.22) and (3.19), respectively (left)
and the first discrete energy levels E+,n(k), depending on k (3.25) (right). The parameters α = 1, D = 1, k = 6 were taken for the left figure.

Figure 8. Plot of the density ρn(x) for n = 0, 1, 2, 3 and current jn(x) for n = 1, 2, 3 in the case of a exponential decaying field. We have
taken α = 1, D = 1 and k = 6.

with z = i cot αx , s2 = D
α

, a2 = −kD
α(D+nα) , s1 = s2 +1 and a1 =

−kD
α(D+nα+α) , where P(a,b)

n (z) are complex Jacobi polynomials.
Another simpler expression for the solutions, avoiding Jacobi
polynomials of complex arguments and parameters, is given
in [24]. Then, the eigenvalues of (2.5) are

E±,n = ±
√

−D2 + k2 + (D + nα)2 − k2 D2

(D + nα)2
(3.18)

and the eigenfunctions can be read from equation (2.24). In this
case, the admissible k values allowing for discrete energies are
unrestricted in the real line. These systems possess an infinite
discrete spectrum whose values are continuous increasing
functions of the wavenumber k. This behavior is opposite to
the one we had for the magnetic barrier of the previous case.
Some features of this case are displayed in figures 5 and 6.

3.4. Case IV: exponential decaying magnetic field

In this situation we have the perpendicular magnetic field
exponentially decaying in the positive x direction:

B = (0, 0, B0e−αx ). (3.19)

Now, the non-zero component of the vector potential is

Ay = − B0

α
e−αx (3.20)

and the superpotential is

W = k − De−αx , D = eB0

h̄cα
. (3.21)

Then, the partner potentials derived from (2.19) are just Morse
potentials [14]:

V1 = k2 + D2e−2αx − 2D

(
k − α

2

)
e−αx ,

V2 = k2 + D2e−2αx − 2D

(
k + α

2

)
e−αx .

(3.22)

The corresponding eigenvalues are

ε2,n = ε1,n−1 = k2 − (k − nα)2, (3.23)

and the component eigenfunctions are

ψ j,n(z(x)) = zs j −ne−z/2 L
2s j −2n
n (z), j = 1, 2 (3.24)

7
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Figure 9. Singular hyperbolic field. Plot of the effective potentials V1, V2 and magnetic field B according to (3.29) and (3.26), respectively
(left), and the first discrete energy levels E+,n(k) depending on k given by (3.32) (right). The parameters α = 1, D = 3 and k = 16 were taken
for the left figure.

Figure 10. Plot of the density ρn(x) for n = 0, 1, 2, 3 and current jn(x) for n = 1, 2, 3 in the case of a singular hyperbolic field. We have
taken α = 1, D = 3 and k = 16.

where z = ( 2D
α
)e−αx , s2 = k

α
, s1 = s2 − 1 and L2s−2n

n (z) are
associated Laguerre polynomials with the condition 2s − 2n >
−1. At the same time, to guarantee square-integrability the
condition s − n > 0 is necessary, due to the accompanying
factors. Both conditions are satisfied when k > αn. Thus, we
have that the Dirac–Weyl two-component eigenfunctions take
the form (2.24) of case (i) and the eigenvalues are

E±,n = ±
√

k2 − (k − nα)2. (3.25)

These results, in our notation, are the same as those obtained
in [11]. Remark that in this case the allowed energies as well
as their number will depend on k. In fact the number of
bound states will grow linearly with k. On the other hand,
the coefficient D, giving the intensity of the magnetic field,
does not affect the energy but only the wavefunctions as a
displacement. If the exponential decay is in the opposite x
direction, then the formulae should be changed according to
case (ii) of section 2. Some details of this case are given in
figures 7 and 8.

3.5. Case V: hyperbolic singular field

The magnetic field for this case is

B =
(

0, 0,
B0

sinh2 αx

)
, (3.26)

so that it diverges at one side of the strip x = 0 and
exponentially vanishes as x → +∞ on the other side
(figure 9). The corresponding vector potential is

Ay = − h̄ D

e
cothαx, (3.27)

leading to the superpotential

W = k − D cothαx, D = eB0

h̄cα
, (3.28)

and the super-partner potentials (the so-called Eckart
potentials) from (2.19) are

V1 = k2 + D2 + D(D + α)cosech2αx − 2k D cothαx ,

V2 = k2 + D2 + D(D − α)cosech2αx − 2k D cothαx .
(3.29)

In order to allow for bound states we must take k > D, the
corresponding eigenvalues are given by ε2,0 = 0 and

ε2,n = ε1,n−1 = D2 + k2 − (D + nα)2 − k2 D2

(D + nα)2
. (3.30)

Their associated eigenfunctions take the form

ψ j,n(z(x)) = (z − 1)−(s j +n−a j )/2(z + 1)−(s j +n+a j )/2

× P
(−s j −n+a j ,−s j −n−a j )
n (z), j = 1, 2 (3.31)

8
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Figure 11. Singular field. Plot of the effective potentials V1, V2 and magnetic field B according to (3.35) and (3.33), respectively (left), and the
first discrete energy levels E+,n(k) depending on k fixed by (3.39) (right). The parameters D = 3, k = 20 were taken for the left figure. Note
that, as always, V2 and B touch at just one point. The line vF = k, shown in the figure, gives the limit of the slope of the bound state lines.

Figure 12. Plot of the density ρn(x) for n = 0, 1, 2, 3 and current jn(x) for n = 1, 2, 3 in the case of a singular field. We have taken D = 3
and k = 20.

with z = cothαx , s2 = D
α

, a2 = kD
α(D+nα) , s1 = s2+1 and a1 =

kD
α(D+nα+α) , where again P(a,b)

n (z) are Jacobi polynomials with
a, b > −1. The square-integrability of the functions (3.31) is
satisfied whenever k > D. Then, the eigenvalues of (2.5) are

E±,n = ±
√

D2 + k2 − (D + nα)2 − k2 D2

(D + nα)2
(3.32)

and the matrix eigenfunctions can be read according to
equation (2.24). This case is similar to the previous one, where
the discrete spectrum appears only if the wavenumber k > 0
(since, as said above, k > D) and the number of discrete
levels depends on k. However, here the spectrum as well as the
wavefunctions depend strongly on D of the magnetic field. It
can be seen from figure 9 that this is due to the behavior of the
potential when x tends to +∞. The probability density ρn(x)
and the current density jn(x) are also plotted in figure 10.

3.6. Case VI: singular magnetic field

The magnetic field for this case is

B =
(

0, 0,
B0

x2

)
, (3.33)

whose vector potential is given by Ay = −B0/x . We have
a similar situation to the previous case: the system is defined
in the half-line (0,+∞) where the field diverges in the origin
but vanishes as x → +∞ (see figure 11). However, since the
behavior in x → +∞ is rational, not exponential, it will lead
to differences in the spectrum. Now, the superpotential is

W = k − D

x
, D = eB0

h̄c
, (3.34)

and the super-partner potentials (2.19) are radial Coulomb
potentials with a centrifugal term:

V1 = k2 + D(D + 1)

x2
− 2k D

x
,

V2 = k2 + D(D − 1)

x2
− 2k D

x
, D > 1.

(3.35)

The eigenvalues of this problem are well known:

ε
(n)
2 = ε

(n−1)
1 = k2 D2

(
1

D2
− 1

(n + D)2

)
(3.36)

9
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while the eigenfunctions can be expressed in terms of Laguerre
polynomials La

n(x):

ψ1,n(z1(x)) = zD+1
1 e−z1/2 L2D+1

n (z1),

z1 = 2k D

n + D + 1
x

(3.37)

and

ψ2,n(z2(x)) = zD
2 e−z2/2 L2D−1

n (z2), z2 = 2k D

n + D
x .

(3.38)
The initial condition D > 1 guarantees the square-integrability
of these eigenfunctions. Then, the eigenvalues of the Dirac–
Weyl equation (2.5) are

E±,n = ±k D

√
1

D2
− 1

(n + D)2
(3.39)

and their corresponding matrix eigenfunctions can be read
as always from equation (2.24). As we said above this
problem has similarities with case V, for instance, there will
be no discrete spectrum unless the wavenumber k is positive.
However, once k > 0, due to the change of exponential by
rational functions the number of levels is infinite and the value
of k affects their energy values linearly. For this case the plots
of probability density ρn(x) and current density jn(x) can be
seen in figure 12.

4. Conclusions

In this paper we have studied some cases where the
wavefunctions of electrons in a graphene layer under the
influence of perpendicular magnetic fields can be found
in an analytical closed form. Our aim is to show the
relation between the massless Dirac–Weyl equation and SUSY
quantum mechanics. We have used SUSY techniques in order
to solve the Dirac–Weyl equation. In this way we have
obtained six different cases that can be solved analytically. We
have discussed the main features of these cases concerning the
bound states that were illustrated in some figures.

Here, we want to make a remark on the k values allowing
for bound states. Due to the independence of the Hamiltonian
on the y variable, the canonical momentum py must be a
constant that we called h̄k. Recall that, from a classical point
of view, for a particle in a magnetic field with vector potential
A (2.8) and charge −e, the y component of momentum is
py = πy−eAy(x)/c, where πy is interpreted as a ‘kinematical’
momentum in the y direction. In other words, the quantity
πy = h̄k + eAy(x)/c measures the motion in the y direction.

Now, the value of k fixed, consider a point (x0, y) of the
plane in the line x = x0, where πy(x0) = h̄k + eAy(x0)/c = 0
and where Ay(x) is monotonic (let us assume here that it is an
increasing function). If we have our particle in a point (x, y ′)
with x > x0, then πy = h̄k + eAy(x)/c > 0. This means
that the charge will move in the positive y direction. However,
when the particle is in a point with x < x0 the kinematical
momentum is negative and it will move in the opposite y

direction. For the points on the line where x = x0, the motion
in the y direction vanishes and the particle can move only in
the x direction.

An example where this classical motion can happen is
when the particle moves along a circle around the point (x0, y).
We can assume that these conditions are also satisfied by other
motions in the plane that enclose (maybe not by a circular
trajectory, but by another kind of curve) each point (x0, y) of
the x0 line. If our picture is correct, such motions are close
to the line x = x0 and therefore they will characterize the
bound states in the x direction. We will see in the following
that, in the cases under study, this conjecture is indeed correct
for the bound states of our quantum systems. A more detailed
discussion for more general cases will be given elsewhere.

Now we will look at the points x0 where the kinematical
momentum is zero. Notice that from our definition (2.16) of
the superpotential W (x) we have

W (x) = h̄πy(x)

and the field B(x) in (2.8) is related to W ′(x) by

W ′(x) = e

ch̄
B(x).

Therefore W (x) and W ′(x) have a clear physical meaning. Let
us take units where h̄ = e/ch̄ = 1 in order to simplify the
expressions. For the effective potential V1 (2.19) in the point
x0 where W (x0) = πy(x0) = 0 we have

V1(x0) = W ′(x0) = B(x0).

In other words, the point x0 is characterized by the coincidence
of the field B and the partner potential V1 using appropriate
units. Since V1(x) = W (x)2 + B(x), the effective potential V1

is always greater than B(x), except at x0. This is shown in the
figures displaying V1, V2 and B .

In the cases where Ay(x) is increasing near x0, as we
discussed in the classical frame, for x > x0 (x < x0) then
πy(x) > 0 (πy(x) < 0), so we expect that in the quantum
case on these points we will have j (x) > 0 ( j (x) < 0).
This behavior is qualitatively appreciated in the plots of the
current density jn(x). The fact that the line x = x0 is related
to the bound states is also shown in the figures of the density
probability ρ(x), especially for the ground state ρ0(x). We
have checked in all the cases considered in this paper that
the bound states take place only when the parameters of the
potential and the wavenumber k are such that there is a x0 point
where W (x0) = πy(x0) = 0. However, we remark that we do
not know if this property is satisfied in other cases.

A second feature is present in the figures representing the
energies of bound states as a function of the wavenumber k.
As mentioned above, these bound states correspond only to the
motion in the x direction, as a consequence of the separation
of variables of the problem. However, as the problem is two-
dimensional, the average velocity in the y direction for these
bound states can be computed as shown in [4, 8] in the form
vn(k) = ∂E/∂k. As we have seen in figure 3 the bound
states disappear as k increases, but in figures 7 and 9 the bound
states disappear as k decreases. There are enveloping straight
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lines with slope ±vF touching the end points of these levels.
This means that, at these points, where the states disappear as
bound states and transform into scattering states, the average y
velocity is ±vF.

Essentially, we have dealt in this paper with two basic
situations: (i) symmetric magnetic fields with respect to x
(cases I, II and III) and (ii) non-symmetric magnetic fields
increasing towards one edge and vanishing in the opposite edge
(cases IV, V and VI).

With respect to the symmetric case, it always allows for
bound states for k = 0, while the spectrum will change as k
grows, except for the uniform field that can be considered as
a reference that has the energy levels constant for any value of
k. If we start with the constant value of the field at x = 0,
we can modify the field, bending it downwards or upwards
leading to cases II and III. We have seen that, in case II,
where the field is bounded to the central region of the strip
and vanishes at the edges, the spectrum values decreases as
|k| grows, and in this process the levels disappear one by one.
However, in case III, where the magnetic field is very high
on approaching both edges, the spectrum moves upward as |k|
increases.

As far as the second situation, we see that, due to the high
values on one edge, and the vanishing on the other edge, it
gives rise to a monotonic effective potential not allowing for
bound states when k = 0. Only if k �= 0 with the correct sign
will we have an effective potential leading to bound states. This
discrete spectrum, produced by k, will depend on the boundary
behavior of the field.
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[17] Kuru Ş, Teǧmen A and Verçin A 2001 J. Math. Phys. 42 3344
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